Swimming Pool Safety

Swimming Pool Safety

It’s swimming pool season! 
Time to refresh our safety rules. 

TOP 10 SWIMMING POOL SAFETY TIPS:

  • Assign lifeguard duties –
  • Jump in feet first – no diving –
  • NO NOT leave a child unattended, ever –
  • Teach your child water safety –
  • Take toys out of the pool when not in use –
  • Check pool safety barriers (fencing, gates, covers) –
  • Enforce safety rules –
  • Take a CPR and first aid class (be prepared) –
  • Have rescue equipment on hand, life ring, rescue hook, first aid kit –
  • Do not swim under the influence of alcohol or drugs –
  • Stay away from drains –
  • If a child goes missing, look for him.er in the pool or spa FIRST –
  • Lock up pool chemicals out of sight and reach –
  • no electrical appliances near the poolside –
  • no glass near the poolside –
  • no running on the pool deck

More tips at: https://wapo.st/2ImvOvm

https://www.solarponics.com/services/residential/salt-water-chlorinator/
Consider the comfort of a swimming pool salt water chlorinator.

What is the Most Productive Day of the Week?

What is the Most Productive Day of the Week?

Tuesday is the Most Productive Day of the Week

Have a challenging project to tackle? Take it up on Tuesday, a new survey from Accountemps suggests. Thirty-nine percent of human resources (HR) managers interviewed rank Tuesday as the most productive day of the week. Thursday and Friday tied for the least productive day, with each receiving just 3% of the responses. “Many workers spend Monday catching up from the previous week and planning the one ahead,” said Max Messmer, chairman of Accountemps and author of Managing Your Career For Dummies® (John Wiley & Sons, Inc.). “On Tuesday, employees may begin to have time to Focus on individual tasks and become more productive.”

Tuesday is also the Sunniest Day

so the most productive for solar energy, too[1]. Calculations are based on average clear days using weather records from the Met Office temperature charts and sunshine statistics. The research found that Tuesdays tend to be the warmest (most sunshine) with an average high temperature of 73F.

[1] https://www.telegraph.co.uk/news/weather/5686288/Weekends-really-are-less-sunny-than-weekdays-weather-analysis-shows.html

Solar Tariff: What Will It Cost Me, The Consumer?

Solar Tariff: What Will It Cost Me, The Consumer?

To Our Customers;

The White House has approved and imposed a 30% import tariff on all solar modules manufactured outside of the U.S. The purpose of the tariff is to encourage U.S. manufacturing and create a more level playing field for U.S. companies competing against low-cost imports inside the U.S.

Solarponics expects to be able to maintain current module pricing for the near term. We feature American-made panels manufactured in San Antonio, Texas. We also source panels that will be subject to the 30% tariff. Of the foreign manufacturers that we source from, we have either pre-negotiated a tariff cap on pricing and/or the modules have already seen a price adjustment in anticipation of the tariff. The net result is that the average home solar installation using imported modules is expected to see a 1% price increase for our solar customers on the central coast.

In the past year, Solarponics has also worked diligently on continuing to streamline processes that have lowered install costs while still delivering a superior product. These efficiencies will more than likely offset the anticipated 1% increase that the tariff is expected to add. The net result is no immediate price change to Solaraponics customers.

Solarponics does not expect much of a disruption regarding solar energy projects. We do not expect any jobs lost at Solarponics. We do not expect a slowdown of projects mainly because solar energy still a great value that delivers significant savings. Our mission is to help Central Coast residents achieve energy independence, save money and enrich their lives. We will still be able to accomplish our mission.

Solarponics Team

 

Net Zero: What Does It Mean And How Is It Achieved?

Net Zero: What Does It Mean And How Is It Achieved?

Full article pdf with sources included

There are many sources that define net zero differently, such as The International Living Future Institute, The Department of Energy, or the National Renewable Energy Laboratory. For our purposes, we’ll accept the Wikipedia definition, since it allows for Wikipedia editors to update and revise the definition, creating a common, agreed upon definition.

Net Zero is a term most commonly associated with commercial buildings, although it is completely possible for any habitable structure to be a net zero structure.

A zero-energy building, also known as a zero net energy (ZNE) building, net-zero energy building (NZEB), or net zero building, is a building with zero net energy consumption, meaning the total amount of energy used by the building on an annual basis is roughly equal to the amount of renewable energy created on the site, or nearby.

This definition doesn’t account for the type of energy used, though. Where this becomes important is if the building uses natural gas, propane, or some other fuel besides electricity.

Net Zero buildings consequently contribute less overall greenhouse gas to the atmosphere than similar non-ZNE buildings. They do at times consume non-renewable energy and produce greenhouse gases, but at other times reduce energy consumption and greenhouse gas production elsewhere by the same amount.

Most zero net energy buildings get half or more of their energy from the grid, and return the same amount at other times. Buildings that produce a surplus of energy over the year may be called “energy-plus buildings” and buildings that consume slightly more energy than they produce are called “near-zero energy buildings” or “ultra-low energy houses.”

Traditional buildings consume 40% of the total fossil fuel energy in the US and European Union and are significant contributors of greenhouse gases. The zero net energy consumption principle is viewed as a means to reduce carbon emissions and reduce dependence on fossil fuels and although zero-energy buildings remain uncommon even in developed countries, they are gaining importance and popularity.

Most zero-energy buildings use the electrical grid for energy storage but some are independent of the grid. Energy is usually harvested on-site through energy producing technologies like solar and wind, while reducing the overall use of energy with highly efficient HVAC and lighting technologies such as LED. The zero-energy goal is becoming more practical as the costs of alternative energy technologies decrease and the costs of traditional fossil fuels increase.

So, what is a net zero city? Well, in the simplest terms and definition, it is a city with zero net energy consumption, meaning the total amount of energy used by the entire infrastructure of the city on an annual basis is roughly equal to the amount of renewable energy created on the site, or nearby.

That would include energy used by all vehicles, construction, public works, buildings, homes, maintenance, etc.. Every kWh of energy that the city uses, it would need to produce and/or offset at an equal equivalent.

The largest net-zero community in the U.S. is West Village, a mixed-use campus neighborhood at UC Davis, designed to house 3,500 students, staff, and families once complete. Phase one has been occupied for over a year and is close to meeting its net-zero design target. Technological glitches and higher-than-expected demand from apartment dwellers’ plugged-in gadgets held it back from claiming energy-neutral status.3 So for now, they are a “near zero” community.

The City of Lancaster, California, has a goal of becoming the first city in the US to reach the net zero designation. Almost every public building from its City Hall to the minor-league baseball stadium is powered by solar. In 2013, Lancaster became the first U.S. city to require solar panels be installed on every new single-family home.

The City Council is adopting a new ordinance complementing the town’s existing solar panel requirements. All new homes will be required to have solar panels generating two watts of energy for every square foot (a more aggressive demand than the 1-kilowatt-per-house rule in the 2013 policy), pay mitigation fees of $1.40 per square foot to get a 50 percent discount on the energy generation component of their bill, or a combination of both.

Bloomfield, Iowa is embarking on a path to be an energy-independent community. With help from the Rocky Mountain Institute’s Electricity Innovation Lab, Bloomfield identified that they can achieve net-zero grid electric usage through energy conservation measures, distributed renewable energy production, and supplemental generation for peak shaving.

Boston, Massachusetts has developed a Greenovate Boston Climate Action Plan with the goal of reducing carbon emissions 80% below 2005 levels by 2050. Boston has been named by the American Council for an Energy-Efficient Economy as the most energy efficient city in the U.S.

Cambridge, Massachusetts has set up a Net Zero Task Force to explore the possibilities for Cambridge moving towards becoming a net zero energy community.

Georgetown, Texas will be getting all its electricity from solar and wind by 2017 for a very simple and practical reason: it’s cheaper.

San Luis Obispo, California is the latest U.S. city to announce its goal of becoming a net zero city, although no timeline or initiatives have been proposed yet. It is both encouraging and inspirational that so many homes, buildings, campuses, cities have developed plans to become net zero energy users. With energy costs on the rise, and renewable energy production costs already less expensive than traditional non-renewable energy, the prospects of achieving net zero consumption on a mass scale seems quite possible, and doable by this generation.

Full article pdf with sources included